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Chapter III. Dual Spaces and Duality.

III.1 Definitions and Examples.

The linear functionals (also known as dual vectors) on a vector space V over K are
the linear maps ℓ : V → K. We denote the space of functionals by V ∗, or equivalently
HomK(V, K). It becomes a vector space when we impose the operations

1. Addition: (ℓ1 + ℓ2)(v) = ℓ1(v) + ℓ2(v) for all v ∈ V

2. Scaling: (λ·ℓ)(v) = λ·ℓ(v) for λ ∈ K, v ∈ V

The zero element in V ∗ is the zero functional ℓ(v) = 0K for all v ∈ V , for which
ker(ℓ) = V and range(ℓ) = {0K}.

Notation: We will often employ “bracket” notation in discussing functionals, writing

⟨ℓ, v⟩ instead of ℓ(v)

This notation combines inputs ℓ, v to create a map V ∗ × V → K that is linear in each
entry when the other entry is held fixed. In bracket notation both inputs play equal
roles, and either one can be held fixed while the other varies. As we shall see this has
many advantages. !

We begin with an example that is central in understanding what dual vectors are and
what they do.

1.1. Example. Let V be a finite dimensional space and X = {e1, . . . , en} an ordered
basis. Every v ∈ V has a unique expansion

v =
n

∑

i=1

ciei (ci ∈ K)

For each 1 ≤ i ≤ n the map e∗i : V → K that reads off the ith coefficient

⟨e∗i , v⟩ = ci

is a linear functional in V ∗. We will soon see that the set of functionals X∗ = {e∗1, . . . , e
∗
n}

is a basis for the dual space V ∗, called the dual basis determined by X, from which it
follows that the dual space is finite dimensional with dim(V ∗) = dim(V ) = n. !

The following examples give some idea of the ubiquity of dual spaces in linear algebra.

1.2. Example. For V = K[x] an element a ∈ K determines an “evaluation functional”
ϵa ∈ V ∗:

⟨ϵa, f⟩ =
n

∑

k=0

ckak if f =
n

∑

k=0

ckxk

These do not by themselves form a vector subspace of V ∗ because ⟨ϵa−ϵb, f⟩ = f(a)−f(b)
cannot always be written as f(c) for some c ∈ K.

More generally, if V = C[a, b] is the space of continuous complex valued functions
on the interval X = [a, b] ⊆ R we can define evaluation functionals ⟨ϵs, f⟩ = f(s) for
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a ≤ s ≤ b, but many element in V ∗ are of a quite different nature. Two examples:

(i) I(f) =

∫ b

a
f(t) dt (Riemann integral of f)

(ii) Ix(f) =

∫ x

a
f(t) dt (for any endpoint a ≤ x ≤ b)

For another example, consider the space V = C(1)(a, b) of real-valued functions on
an interval (a, b) ⊆ R that have continuous first derivative df/dx(s). We can define the
usual evaluation functionals ϵs ∈ V ∗, but since differentiation is a linear operator on
C(1)(a, b) there are also functionals ℓs involving derivatives, such as

ℓs : f →
df

dx
(s) for a < s < b ,

or even linear combinations such as ℓ̃s(f) = f(s) + df
dx

(s). !

1.3. Example. Suppose V is finite dimensional and that l ∈ V ∗ is not the zero
functional. The kernel E = ker(ℓ) = {v ∈ V : ⟨ℓ, v⟩ = 0} is a “hyperplane” in V – a
vector subspace of dimension n− 1 where n = dim(V ).

Proof: By the dimension formula,

dimK(V ) = dimK ( ker(ℓ)) + dimK (range(ℓ))

But if ℓ ̸= 0, say ⟨ℓ, v0⟩ ≠ 0, then ⟨ℓ, Kv0⟩ = K, so range(ℓ) = K has dimension 1. !

1.4. Example. On Rn we have the standard Euclidean inner product

(x,y) =
n

∑

k=1

xkyk for x,y ∈ Rn ,

familiar from Calculus, but this is just a special case of the standard inner product on
complex n-dimensional coordinate space Cn,

(23) (z,w) =
n

∑

k=1

zkwk for complex n-tuples z,w in Cn ,

where z = x−iy is the complex conjugate of z = x+iy. We will focus on the complex case,
because everything said here applies verbatim to the real case if you interpret “complex
conjugation” to mean x = x for real numbers.

In either case, imposing an inner product on coordinate space V = Kn allows us to
construct K-linear functionals ℓy ∈ V ∗ associated with individual vectors y ∈ V = Kn,
by defining

⟨ℓy,x⟩ = (x,y) for any x ∈ V

In this setting the right hand vector y is fixed, and acts on the left-hand entry to produce
a scalar in K. (Think of y as the “actor” and x as the “actee” – the vector that gets
acted upon.)

The functional ℓy is K-linear because the inner product is linear in its first entry
when the second entry y is held fixed, hence ℓy is a dual vector in V ∗. Note carefully
the placement of the “actee” on the left side of the inner product; the inner product on
a vector space over K = C is a conjugate-linear function of the right hand entry.

(z, λ ·w) = λ · (z,w) while (λ · z,w) = λ · (z,w)

56



for λ ∈ K. Placing the “actee” on the right would not produce a C-linear operation on
input vectors. (When K = R, complex conjugation doesn’t do anything, and “conjugate-
linear” is the same as “linear.”)

The special case Kn = Rn is of course important in geometry. The inner product on
Rn and the functionals ℓy then have explicit geometric interpretations:

(x,y) = ⟨ℓy,x⟩ = ∥x∥ · ∥y∥ · cos(θ)

= ∥x∥ · (∥y∥ · cos θ)

= ∥x∥ ·

(

orthogonally projected length of y
on the 1-dimensional subspace R·x

)

,

where

∥x∥ = (x,x)1/2 = (
n

∑

k=1

|xk|
2)

1/2

is the Euclidean length of vector x ∈ Rn. The angle θ = θ(x,y) is the angle in radians
between x and y, measured in the plane (two-dimensional subspace) spanned by x and y
as shown in Figure 3.1. Notice that x and y are perpendicular if (x,y) = 0, so cos(θ) = 0.

Note: While the real inner product is natural in geometry, in physics the complex inner
product is the notion of choice (in electrical engineering, quantum mechanics, etc, etc).
But beware: physicists employ a convention opposite to ours. For them an inner product
is linear in the right-hand entry and conjugate linear on the left. That can be confusing
if you are not forwarned. !

Figure 3.1. Geometric interpretation of the standard inner product (x, y) = ∥x∥ ∥y∥ ·
cos(θ(x, y)) in Rn. The projected length of a vector y onto the line L = Rx is ∥y∥·cos(θ).
The angle θ(x, y) is measured within the two-dimensional subspace M = R-span{x, y}.
Vectors are orthogonal when (x, y) = 0, so cos θ = 0. The zero vector is orthogonal to
everybody.

1.5. Example. In V = R3 with the standard inner product (x,y) =
∑

i xiyi, fix a
vector u ̸= 0. The set of vectors M = {x ∈ R3 : (x,u) = 0} is the hyperplane of vectors
orthogonal to u – see Figure 3.2. As an example, if u = (1, 0, 0) ∈ R3 and ℓu(x) = (x,u)
as in Example 1.4, this orthogonal hyperplane coincides with the kernel of ℓu:

M = ker (ℓu) = {(x1, x2, 0) : x1, x2 ∈ R} = R-span{e1, e2} ! .

1.6. Exercise. If u ̸= 0 in an inner product space of dimension n, explain why the
orthogonal complement

M = (R·u)
⊥

= {x : (x,u) = 0}

is a subspace of dimension n− 1.
Hint: Reread Example 1.3.
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Figure 3.2. A nonzero vector u ∈ Rn determines a hyperplane M = (Ru)⊥ = {x : (x,y) =
0} = ker(ℓu), an (n − 1)-dimensional subspace consisting of the vectors perpendicular to
u.

1.7. Example. Let V = C[0, 1] be the ∞-dimensional space of all continuous complex-
valued functions f : [0, 1]→ C. The Fourier transform of f is the function f∧ : Z→ C

defined by integrating f(t) against the complex trigonometric functions

En(t) = e2πint = cos(2πt) + i sin(2πt) (n ∈ Z)

on the real line. The nth Fourier coefficient of f(t) is the integral:

f∧(n) =

∫ 1

0
f(t)e−2πint dt (n ∈ Z)

(Note that the En are all periodic with period ∆t = 1, so this integral is taken over
the basic period 0 ≤ t ≤ 1 common to them all.) If f(t) is smooth and periodic with
f(t+1) = f(t) for all t ∈ R, it can be synthesized as a superposition of the basic complex
trigonometric functions En, with weights given by the Fourier coefficients:

f(t) =
+∞
∑

n=−∞

f∧(n)·e2πint =
+∞
∑

n=−∞

f∧(n)·En(t)

The series converges pointwise on R if f is periodic and once continuously differentiable.
For each index n ∈ Z the map

f ∈ C[0, 1]
φn

−−−−→ f∧(n) ∈ C

is a linear functional in V ∗. It is actually another example of a functional determined
via an inner product as in Example 1.4. The standard inner product on C[0, 1] is (f, h) =
∫ 1
0 f(t)h(t) dt, and we have

φn(f) = f∧(n) =

∫ 1

0
f(t)En(t) dt = (f, En)

for all n ∈ Z, f ∈ V . So, φn is precisely the functional ℓEn
in Example 1.4. !

III.2. Dual Bases in V∗.
The dual space V ∗ of linear functionals can be viewed as the space of linear operators
HomK(V, K). For arbitrary vector spaces V, W of dimension m, n we saw earlier in Lemma
4.4 of Chapter II that HomK(V, W ) is isomorphic to the space M(n × m, K) of n × m
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matrices, which obviously has dimension m·n. In the special case when W = K we get
dim(V ∗) = m = dim(V ).

This can also be seen by re-examining Example 1.1, which provides a natural way to
construct a basis X∗ = {e∗1, . . . , e

∗
n} in V ∗, given an ordered basis X = {e1, . . . , en} in V .

The functional e∗i reads the ith coefficent in the unique expansion v =
∑

i ciei of a vector
v ∈ V , so that

(24) ⟨e∗i ,
n

∑

k=1

ckek ⟩ = ci for 1 ≤ i ≤ n

As an immediate consequence, the linear functional e∗i : V → K is completely determined
by the property

(25) ⟨ e∗i , ej ⟩ = δij (the Kronecker delta symbol = 1 if i = j and 0 otherwise)

Identity (25) follows because ej = 0 ·e1 + . . . + 1 ·ej + . . . + 0 ·en; we recover (24) by
observing that

⟨e∗i ,
n

∑

k=1

ckek ⟩ =
n

∑

k=1

ck⟨e
∗
i , ek⟩ =

n
∑

k=1

ckδik = ci

as expected.
We now show that the vectors e∗1, . . . , e

∗
n form a basis in V ∗, the dual basis to the

original basis X in V . This implies that dim(V ∗) = dim(V ) = n. Note, however, that to
define the dual vectors e∗i you must start with a basis in V ; given a single vector “v” in
V there is no way to define a dual vector “v∗” in V ∗.

2.1. Theorem. If V is finite dimensional and X is a basis for V , the vectors X∗ =
{e∗1, ..., e

∗
n} are a basis for V ∗.

Proof: Independence. If ℓ =
∑n

j=1 cje∗j is the zero vector in V ∗ then ⟨
∑

j cie∗j , v⟩ = 0
for every v ∈ V , and in particular if v = ei we get

0 = ⟨ℓ, ei⟩ =
∑

j

cj⟨e
∗
j , ei⟩ =

∑

j

cjδji = ci

for 1 ≤ i ≤ n, proving independence of the vectors e∗i .

Spanning. If ℓ ∈ V ∗ and ci = ⟨ℓ, ei⟩, we claim that ℓ is equal to ℓ′ =
∑n

j=1⟨ℓ, ej⟩ · e∗j .
It suffices to show that ℓ and ℓ′ have the same values on the basis vectors {ei} in V , but
that is obvious because

⟨ℓ′, ei⟩ = ⟨
∑

j

⟨ℓ, ej⟩e
∗
j , ei⟩

=
∑

j

⟨ℓ, ej⟩·⟨e
∗
j , ei⟩ =

∑

j

⟨ℓ, ej⟩·δij = ⟨ℓ, ei⟩

for 1 ≤ i ≤ n as claimed. !

The formula developed in this proof is often useful in computing dual bases.

2.2. Corollary. If V is finite dimensional, X = {ei} a basis in V , and X∗ = {e∗i } is the
dual basis in V ∗, then any ℓ ∈ V ∗ has

ℓ =
n

∑

i=1

⟨ℓ, ei⟩ · e
∗
i

as its expansion in the X∗ basis.
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2.3. Exercise. If v1 ̸= v2 in a finite dimensional vector space V , prove that there is an
ℓ ∈ V ∗ such that ⟨ℓ, v1⟩ ≠ ⟨ℓ, v2⟩. (Thus there are enough functionals in the dual V ∗ to
distinguish vectors in V .)
Hint: It suffices to show v0 ̸= 0 ⇒ ⟨ℓ, v0⟩ ≠ 0 for some ℓ ∈ V ∗. (Why?) Think about
bases in V that involve v0, and their duals.

Note: This result is actually true for all infinite dimensional spaces, but the proof is
harder and requires “transcendental methods” involving the Axiom of Choice. These
methods also show that every infinite dimensional space has a basis X – an (infinite)
set of independent vectors such that every v ∈ V can be written as a finite K-linear
combination of vectors from X. As an example, the basic powers X = {1-, x, x2, . . .} are a
basis for K[x] in this sense. A more challenging problem is to produce a basis for V = R

when R is regarded as a vector space over the field of rationals Q. Any such Hamel basis
for R is necessarily uncountable. !

2.4. Example. Consider the basis u1 = (1, 0, 1), u2 = (1,−1, 0), u3 = (2, 0,−1) in R3.
We shall determine the dual basis vectors u∗

i by computing their action as functionals
on an arbitrary vector v = (x1, x2, x3) in R3.

Solution: Note that (x1, x2, x3) =
∑3

k=1 xkek where {ek} is the standard basis in R3.
The basis {e∗k} dual to the standard basis {ek} has the following action:

⟨e∗k, (x1, x2, x3) ⟩ = ⟨e∗k,
3

∑

i=1

xiei⟩ = xk

because e∗k reads the kth coefficient in v =
∑

i xiei. For a different basis such as Y = {ui},
the dual vector u∗

k reads the kth coefficient ck when we expand a typical vector v ∈ R3

as v =
∑3

j=1 cjuj , so our task reduces to writing v = (x1, x2, x3) =
∑3

j=1 xiej in terms
of the new basis {uk}.

In matrix form, we have:

⎛

⎝

x1

x2

x3

⎞

⎠ =
∑

i

ciui = c1

⎛

⎝

1
0
1

⎞

⎠ + c2

⎛

⎝

1
−1
0

⎞

⎠ + c3

⎛

⎝

2
0
−1

⎞

⎠

so we must solve for C in the matrix equation

AC = X =

⎛

⎝

x1

x2

x3

⎞

⎠ where A =

⎛

⎝

1 1 2
0 −1 0
1 0 −1

⎞

⎠

Row operations on the augmented matrix for this system yield:

[A : X] =

0

@

1 1 2 x1

0 −1 0 x2

1 0 −1 x3

1

A →

0

@

1 1 2 x1

0 1 0 −x2

0 −1 −3 x3 − x1

1

A

→

0

B

@

1 1 2 x1

0 1 0 −x2

0 0 1 1
3 (x1 + x2 − x3)

1

C

A

There are no free variables; backsolving yields the unique solution

c1 = x1 − c2 − 2c3 = 1
3x1 + 1

3x2 + 2
3x3

c2 = −x2

c3 = 1
3 (x1 + x2 − x3)
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Thus,
v = (1

3x1 + 1
3x2 + 2

3x3)u1 − x2u2 + (1
3x1 + 1

3x2 −
1
3x3)u3

Now read off the coefficients when v = (x1, x2, x3). Since ⟨u∗
i ,uj⟩ = δij we get

⟨u∗
i , v ⟩ = ⟨u∗

i , (x1, x2, x3) ⟩ = ⟨u∗
i ,

∑

i

xiei⟩

= ⟨u∗
i ,

∑

j

cjuj⟩ = ci =

⎧

⎪

⎨

⎪

⎩

1
3x1 + 1

3x2 + 2
3x3 i = 1
−x2 i = 2

1
3x1 + 1

3x2 −
1
3x3 i = 3

Since ⟨ e∗k, (x1, x2, x3) ⟩ = xk we can also rewrite this in the form

u∗
1 = 1

3e
∗
1 + 1

3e
∗
2 + 2

3e3

u∗
2 = −e∗2

u∗
3 = 1

3e
∗
1 + 1

3e
∗
2 −

1
3e∗3

by Corollary 2.2. !

III.3. The Transpose Operation. There is a natural connection between linear
operators T : V →W and operators in the opposite direction, from W ∗ → V ∗.

3.1. Theorem. The transpose T t : W ∗ → V ∗ of a linear operator T : V → W
between finite dimensional vector spaces is a linear operator that is uniquely determined
in a coordinate-free manner by requiring that

(26) ⟨T t(ℓ), v⟩ = ⟨ℓ, T (v)⟩ for all ℓ ∈ W ∗, v ∈ V

Proof: The right side of (26) defines a map φℓ : V → K such that φℓ(v) = ⟨ℓ, T (v)⟩.
Observe that φℓ is a linear functional on V (easily verified), so each ℓ ∈W ∗ determines a
well defined element of V ∗. Now let T t : W ∗ → V ∗ be the map T t(ℓ) = φℓ. The property
(26) holds by definition, but we must prove T t is linear (and uniquely determined by the
property (26)).

Uniqueness is easy: if S : W ∗ → V ∗ is another operator such that

⟨S(ℓ), v⟩ = ⟨ℓ, T (v)⟩ = ⟨T tℓ, v⟩ for all ℓ ∈W ∗ and v ∈ V ,

these identities imply S(ℓ) = T t(ℓ) for all ℓ, which means S = T t as maps on W ∗.
The easiest proof that T t is linear uses the scalar identities (26) and the following

general observation.

3.2. Exercise. If V, W are finite dimensional vector spaces, explain why the following
statements regarding two linear operators A, B : V → W are equivalent.

1. A = B as operators.

2. Av = Bv for all v ∈ V .

3. ⟨ℓ, Av⟩ = ⟨ℓ, Bv⟩ for all v ∈ V, ℓ ∈W ∗.

Hint: Use Exercise 2.3 to prove (3.)⇒ (2.); implications (2.)⇒ (1.)⇒ (3.) are trivial.

To prove T t(ℓ1 + ℓ2) = T t(ℓ1) + T t(ℓ2) just bracket these with an arbitrary v ∈ V and
compute:

⟨T t(l1 + l2), v⟩ = ⟨l1 + l2, T (v)⟩

= ⟨l1, T (v)⟩+ ⟨l2, T (v)⟩ (definition of (+) in W ∗)

= ⟨T t(l1) + T t(l2), v⟩ (definition of (+) in V ∗)
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for all v ∈ V . The other identity we need, T t(λ·ℓ) = λ·T t(ℓ), is proved similarly. !

Thus T t : W ∗ → V ∗ is a well-defined linear operator that acts in the opposite direction
from T : V → W .

Basic properties of the correspondence T → T t are left as exercises. The proofs are
easy using the scalar identities (26).

3.3. Exercise. Verify that

1. The transpose 0t of the zero operator 0(v) ≡ 0W from V →W is the zero operator
from W ∗ → V ∗, so 0t(ℓ) = 0V ∗ for all ℓ ∈W ∗.

2. When V = W the transpose of the identity map idV : V → V , with idV (v) ≡ v, is

the identity map idV ∗ : V ∗ → V ∗ – in short, (idV )
t
= idV ∗ .

3. (λ1T1 + λ2T2)t = λ1T t
1 + λ2T t

2 , for any λ1, λ2 ∈ K and T1, T2 : V →W .

3.4. Exercise. If U
T
−→ V

S
−→ W are linear maps between finite dimensional vector

spaces, prove that

(S ◦ T )
t
= T t ◦ St

Note the reversal of order when we compute the transpose of a product.

3.5. Exercise. If V, W are finite dimensional and T : V → W is an invertible linear

operator (a bijection), prove that T t : W ∗ → V ∗ is invertible too, and (T−1)
t
= (T t)

−1

as maps from V ∗ →W ∗.

Now for some computational issues

3.6. Theorem. Let T : V → W be a linear operator between finite dimensional spaces,
let X = {v1, ..., vm}, Y = {w1, ..., wn} be bases in V , W and let X∗ = {v∗i }, Y∗ = {w∗

j }
be the dual bases in V ∗, W ∗. We have defined the transpose At of an n ×m matrix to
be the m× n matrix such that (At)ij = Aji. Then “[T t] = [T ]t” in the sense that

[T t]X∗Y∗ = ([T ]YX)
t

Important Note: This only works for the dual bases X∗, Y∗ in V ∗, W ∗. If A, B are
arbitrary bases in V ∗, W ∗ unrelated to the dual bases there is no reason to expect that

[T t]BA = the transpose of the matrix [T ]YX !

Proof: To determine [T t] we must calculate the coefficients [T t]ji in the system of vector
equations

T t(w∗
i ) =

m
∑

j=1

[T t]jiv
∗
j 1 ≤ i ≤ n

These are easily found by applying each of these identities to a basis vector vk in V :

(27) ⟨T t(w∗
i ), vk⟩ =

m
∑

j=1

[T t]ji ·⟨v
∗
j , vk⟩ =

m
∑

j=1

[T t]jiδjk = [T t]ki

for any 1 ≤ i ≤ n and 1 ≤ k ≤ m. Thus

[T t]ki = ⟨T t(w∗
i ), vk⟩
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Figure 3.3. The decomposition V = W1⊕W2 determines the projection P : R2 →
R2 in Example 3.7 that maps V onto W1 = Ru1 along W2 = Ru2. We show that
its transpose P t projects V ∗ onto its range R(P t) = Ru∗

1 = R(e∗
1 − e∗

2), along
K(P t) = Ru∗

2 = Re∗
2. Horizontal axis in this picture is Re∗

1 and vertical axis is
Re∗

2; a functional is then represented as ℓ = (ẋ1e
∗
1 + ẋ2e

∗
2) with respect to the basis

X∗ = {e∗
1, e

∗
2} dual to the standard basis X = {e1, e2}.

By definition of T t and the matrix [T ]YX, we can also write (27) as

⟨T t(w∗
i ), vk⟩ = ⟨w∗

i , T (vk)⟩ = ⟨w∗
i ,

n
∑

j=1

[T ]jkwj⟩

=
j

∑

j=1

[T ]jk⟨w
∗
i , wj⟩ =

n
∑

j=1

[T ]jkδij = [T ]ik

for any 1 ≤ i ≤ n, 1 ≤ k ≤ m.
Upon comparison with previous result we conclude that [T t]ki = [T ]ik = ([T ]t)ki.

Thus [T t]X∗Y∗ is the transpose of [T ]YX. !

3.7. Exercise (Computing Matrix Entries). If T : V → W and bases X = {ei},
Y = {fi} are given in V, W let X∗, Y∗ be the dual bases. Prove that

[T ]YX = [tij ] has entries tij = ⟨f∗
j , T (ei)⟩

The transpose of a projection P : V → V is a projection P t : V ∗ → V ∗ because
P t ◦ P t = (P ◦ P )t = P t, so P t maps V ∗ onto the range R(P t) along the nullspace
K(P t) = ker(P t) in the direct sum V ∗ = R(P t)⊕K(P t). The following example shows
how to calculate these geometric objects in terms of dual bases.

3.8. Example. Let V = R2 with basis Y = {u1,u2} where u1 = (1, 0), u2 = (1, 1), and
let P = projection onto W1 = Ru1 along W2 = Ru2. The standard basis X = {e1, e2}
or the basis Y = {u1,u2} can be used to describe P . The description with respect to X
has already been worked out in Example 3.6 of Chapter II.

1. Compute the dual bases X∗, Y∗ as functions ℓ : R2 → R and find the matrix
descriptions of P t:

[P t]X∗X∗ and [P t]Y∗Y∗

2. Compute the kernel K(P t) and the range R(P t) in terms of the basis X∗ dual to
the standard basis X.
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3. Repeat (2.) for the basis Y∗.

Solution: First observe that
{

u1 = e1

u2 = e1 + e2
⇒

{

u1 = e1

e2 = u2 − u1

By definition, Y = {u1,u2} is a diagonalizing basis for P , with
{

P (u1) = u1

P (u2) = 0
which ⇒ [P ]YY =

(

1 0
0 0

)

We also have
{

P (e1) = P (u1) = u1 = e1

P (e2) = P (u2 − u1) = −u1 = −e1
which ⇒ [P ]XX =

(

1 −1
0 0

)

The dual basis vectors are computed as functions R2 → R by observing that

u∗
1(v1, v2) = u∗

1(v1e1 + v2e2)
= u∗

1((v1 − v2)u1 + v2u2)
= v1 − v2 = (e∗1 − e∗2)(v1, v2)

which ⇒ u∗
1 = e∗1 − e∗2

and
u∗

2(v1, v2) = u∗
2(v1e1 + v2e2)

= u∗
2((v1 − v2)u1 + v2u2)

= v2 = e∗2(v1, v2)
which ⇒ u∗

2 = e∗2

No further calculations are needed to finish (1.); just apply Theorem 3.6 to get

[P t]X∗X∗ = ([P ]XX)
t
=

(

1 0
−1 0

)

Applying the same idea we see that

[P t]Y∗Y∗ = ([P ]YY)
t
=

(

1 0
0 0

)t

=

(

1 0
0 0

)

.

That resolves Question 1.
For (2.), a functional ℓ = ẋ1e∗1 + ẋ2e∗2 (ẋi ∈ R) is in K(P t)⇔

[P t]X∗X∗

(

ẋ1

ẋ2

)

=

(

1 0
−1 0

)

·

(

ẋ1

ẋ2

)

=

(

ẋ1

−ẋ1

)

is equal to

(

0
0

)

That happens ⇔ ẋ1 = 0, so K(P t) = Re∗2 with respect to the X∗ basis. Since we know
e∗2 = u∗

2 we get K(P t) = Ru∗
2 with respect to the Y∗ basis.

As for R(P t), if ℓ = b1e∗1 + b2e∗2 in the X∗-basis and we let B = col(b1, b2), we must
solve the matrix equation AẊ = B, where A = [P t]X∗X∗ . Row operations on [A : B]
yield

(

1 0 b1

−1 0 b2

)

→

(

1 0 b1

0 0 b2 + b1

)

so B ∈ R(P t) ⇔ b1 + b2 = 0 ⇔ ℓ ∈ R·(e∗1 − e∗2). Thus R(P t) = R·(e∗1 − e∗2) in the X∗

basis, while in the Y∗ basis this becomes

R(P t) = R(e∗1 − e∗2) = R((u∗
2 + u∗

1)− u∗
2) = Ru∗

1 !

The projection P t, and the corresponding decomposition V ∗ = R(P t)⊕K(P t), both
have coordinate-independent geometric meaning. But the components of the direct sum

64



have different descriptions according to which dual basis we use to describe vectors in
V ∗:

V ∗ = R(P t)⊕K(P t) =

{

R(u∗
1)⊕ R(u∗

2) for the Y∗ basis

R(e∗1 − e∗2)⊕ R(e∗2) for the X∗ basis
!

3.9. Exercise. Round out the previous discussion by verifying that

1. For the standard basis X we have R(P ) = Re1 and K(P ) = R·(e1 + e2).

2. For the Y basis we have R(P ) = Ru1 and K(P ) = R(u2).

Reflexivity of Finite Dimensional Spaces. If V is finite dimensional there
is a natural “bracketing map”

φ : V ∗ × V → K given by φ : (ℓ, v) 2→ ⟨ℓ, v⟩

The expression ⟨ℓ, v⟩ is linear in each variable when the other is held fixed. If ℓ is fixed
we get a linear functional v 2→ ℓ(v) on V , but if we fix v the map ℓ 2→ ⟨ℓ, v⟩ is a linear
map from V ∗ → K, and hence is an element j(v) ∈ V ∗∗ = (V ∗)∗, the “double dual” of
V .

3.10. Lemma. If dim(V ) < ∞ the map j : V → V ∗∗ is linear and a bijection. It is a
“natural” isomorphism (defined without reference to any coordinate system) that allows
us to identify V ∗∗ with V .

Proof: For any ℓ ∈ V ∗ we have

⟨j(v1 + v2), ℓ⟩ = ⟨ℓ, v1 + v2⟩ = ⟨ℓ, v1⟩+ ⟨ℓ, v2⟩ = ⟨j(v1), ℓ ⟩+ ⟨j(v2), ℓ ⟩

and similarly
⟨j(λ·v), ℓ⟩ = ⟨ℓ, λv⟩ = λ·⟨ℓ, v⟩ = ⟨λ·j(v), ℓ ⟩

Since these relations are true for all ℓ ∈ V ∗ we see that j(λ1v1+λ2v2) = λ1j(v1)+λ2j(v2)
in V ∗∗ and j : V → V ∗∗ is linear.

Finite dimensionality of V insures that dim(V ∗∗) = dim(V ∗) = dim(V ), so j is a
bijection ⇔ j is onto ⇔ j is one-to-one ⇔ ker(j) = (0). But j(v) = 0 if and only if
0 = ⟨j(v), ℓ ⟩ = ⟨ℓ, v⟩ for every ℓ ∈ V ∗. This forces v = 0 (and hence ker(j) = (0))
because if v ̸= 0 there is a functional ℓ ∈ V ∗ such that ⟨ℓ, v⟩ ≠ 0. [ In fact, we can extend
{v} to a basis {v, v2, ..., vn} of V . Then, if we form the dual basis {v∗, v∗2 , ..., v∗n} in V ∗

we have ⟨v∗, v⟩ = 1.] !

There is, on the other hand, no natural (basis-independent) isomorphism from V to V ∗.
The spaces V and V ∗ are isomorphic because they have equal dimension, so there are
many un-natural bijective linear maps between them. (We can create such a map given
any basis {ei} ⊆ V and any basis {fj} ⊆ V ∗ by sending ei → fi.)

If we identify V = V ∗∗ via the natural map j, then the dual basis (X∗)∗ gets identitfied
with the original basis X in V . [ Details: In fact, the vector e∗∗i in the dual basis to X∗

coincides with the image vector j(ei) because

⟨j(ei), e
∗
j ⟩ = ⟨e∗j , ei⟩ = δij ,

which is the defining property of the vectors (e∗i )
∗ in X∗∗. Hence j(ei) = e∗∗i .] By time-

honored abuse of notation mathematicians often write “X∗∗ = X” even though this is
not strictly true.

Furthermore when we identify V ∗∗ ∼= V , the “double transpose” T tt = (T t)t mapping
V ∗∗ → V ∗∗ becomes the original operator T , allowing us to write

T tt = T (again, by abuse of notation)
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The precise connection between T and T tt is shown in the following commutative diagram

V ∗∗
(T t)t

−−−−→ V ∗∗

j−1 ↓↑ j ↑ j

V
T

−−−−→ V

(Diagram commutes: T tt = j ◦ T ◦ j−1 )

3.11. Exercise. If |V | = dim V < ∞, X = {e1, ..., en} is a basis, and T : V → V a
linear operator,

1. Fill in the details needed to show that the diagram above commutes,

(T t)t ◦ j = j ◦ T

2. Prove the following useful fact relating matrix realizations of T and T tt:

[T tt]X∗∗X∗∗ = [T ]XX

for the bases X and X∗∗ = j(X).

For infinite dimensional spaces there is still a natural linear embedding j : V → V ∗∗.
Although j is again one-to-one, it is not necessarily onto and there is a chain of distinct
dual spaces V , V ∗ , V ∗∗, V ∗∗∗, . . . When dim(V ) < ∞, this process terminates with
V ∗∗ ∼= V . For this reason finite dimensional vector spaces are said to be “reflexive.”
(Some infinite dimensional space are reflexive too, but not many.)

Annhilators. Additional structure must imposed on a vector space in order to speak
of “lengths” or “orthogonality” of vectors, or the “orthogonal complement” W⊥ of some
subspace. When K = R or C, this is most often accomplished by imposing an “inner
product” B : V × V → K on the space. However, in the absence of such extra structure
there is still a natural notion of a “complementary subspace” to any subspace W ⊆ V ;
but this complement

W ◦ = {ℓ ∈ V ∗ : ⟨ℓ, w⟩ = 0 for all w ∈ W} (the annihilator of W )

lives in V ∗ rather than V . It is easily seen that W ◦ is a vector subspace in V ∗. Obviously
(0)◦ = V ∗ and V ◦ = (0) in V ∗, and when W is a proper subspace in V the annihilator

W ◦ is a proper subspace of V ∗, with (0)
⊂
̸= W ◦ ⊂

̸= V ∗ .

3.12. Lemma. Let V be finite dimensional and W
⊂
̸= V a subspace. If v0 ∈ V lies

outside of W there is a functional ℓ ∈ V ∗ such that ⟨ℓ, W ⟩ = 0 so ℓ ∈ W ◦ but ⟨ℓ, v0⟩ ≠ 0.

We leave the proof as an exercise. (The idea is simply to take a basis {e1, ..., er} for W
(with W ̸= V and r < n = dim(V ). Given a vector v0 /∈ W , adjoin additional vectors
er+1 = v0, er+2, ..., en to make a basis X for V . The dual basis X∗ provides the answer.)

We list the basic properties of annihilators as a series of exercises, some of which are
major theorems (hints provided). In proving any of these results you may use any prior
exercise. In all cases we assume dim(V ) <∞.

3.13. Exercise. Let W be a subspace and X = {e1, . . . , er, . . . , en} a basis for V such
that {e1, . . . , er} is a basis in W . If X∗ = {e∗i } is the dual basis, prove that {e∗r+1, . . . , e

∗
n}

is a basis for the annihilator W ◦ ⊆ V ∗.
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3.14. Exercise. (Dimension Theorem for Annihilators). If W is a subspace in a
finite dimensional vector space V , prove that

(28) dimK(W ) + dimK(W ◦) = dimK(V ) ,

or in abbreviated form, |W | + |W ◦| = |V |.

3.15. Lemma. If T : V →W is a linear operator,

1. Prove that
K(T t) = R(T )◦ (annihilator of the range R(T ))

2. Is it also true that R(T t) = K(T )◦ ? If not, what goes wrong?

3.16. Exercise. If T : V → V is linear and W a subspace of V , prove that W is
T -invariant if and only if its annihilator W ◦ is invariant under the transpose T t.

3.17. Exercise. If T : V →W is linear, prove that rank(T t) = rank(T ).

Recall that the rank of any linear operator T : V → W is the dimension |R(T )| =
dim(R(T )) of its range, and if A ∈M(n×m, K) we defined LA : Km → Kn via LA(v) =
A · v, for v ∈ Km. Furthermore, recall that the “column rank” of a matrix is the
dimension of its column space: colrank(A) = dim (Col(A)), and similarly rowrank(A) =
dim (Row(A)). It is important to know that these numbers, computed in entirely different
ways, are always equal – i.e. “row rank = column rank” for any matrix, regardless of its
shape. The following exercises address this issue.

3.18. Exercise. If T : V → W is a linear map between finite dimensional spaces,
X = {ei}, Y = {fj} are bases, and A = [T ]YX, prove that

1. The range R(LA) is equal to column space Col(A), hence

rank(LA) = dim(R(LA)) = dim (Col(A)) = colrank(A)

for any n×m matrix.

2. If A = [T ]Y,X then rank(T ) = rank(LA) = colrank(A)

Hint: For (2.) recall the commutative diagram Figure 2.3 of Chapter II; the vertical
maps are isomorphisms and isomorphisms preserve dimensions of subspaces.

3.19. Exercise. If A is an n×m matrix,

1. Prove that rank(LAt) = rank((LA)t).

2. This would follow if it were true that “(LA)t = LAt .” Explain why this statement
does not make sense.

Hint: Keep in mind the setting for this (and the next) Exercise. If V = Km, W = Kn,
and A is n×m we get a map LA : Km → Kn. The transpose At is m×n and determines
a linear map in the opposite direction:

V
LA−→W V

L
At

←−W V ∗ (LA)t

←− W ∗

The transpose (LA)
t

maps W ∗ → V ∗.

Use the results of the previous exercises to prove the main result below.

3.20. Exercise. If A is an n×m matrix, prove that

Theorem: For any n×m matrix, rowrank(A) = colrank(A)
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